

GEI-2025 Rev.00

11/09/2025

Greenhouse Gases Report TEKNOSERVICE

Revision control					
Review	Date	Changes	Elaborated	Revised	Approved
00	11/09/2025	Initial version	MF	AC	MI

GEI-2025 Rev.00

11/09/2025

INDEX

Index		2
Reference	ce standards	3
Acronym	ıs	4
Definitio	ns	5
1. GEN	NERAL DETAILS, PURPOSE AND POLICY	6
1.1.	Introduction	6
1.2.	Purpose	6
1.3.	Description of Teknoservice	6
1.4.	GHG policies and sustainability, strategies and programs	7
1.5.	Responsible personnel	7
1.6.	Audience and Broadcasting Policy	7
1.7.	Reporting period and frequency	7
1.8.	Report standardization, approaches and verification	7
2. Org	anizational boundaries	9
3. Syst	tem Limits	10
3.1.	Emissions categorization and classification	10
3.2.	Significant factors	10
3.3.	Summary of included emission sources and activity data	11
3.4.	Summary of emissions factors	11
3.5.	Summary of exclusions	12
3.6.	Selection of the quantification approach	12
3.7.	Summary of GPC	13
4. Qua	antification of the emissions inventory	14
4.1.	Consolidated GHG emissions data	14
4.2.	Methodology for data collection and quantification	15
4.3.	Information management procedures	17
4.4.	Determination of uncertainty	18
4.5.	Changes from the base year	19
4.6.	Elimination and reductions/increases	20
Annex 1.		21
Tracea	ability between the report and ISO 14064-1:2019	21

GEI-2025 Rev.00

11/09/2025

REFERENCE STANDARDS

UNE-EN ISO 14064-1 Specification with guidance at the organization level for quantification and reporting of greenhouse gas emissions and removals
 UNE-EN ISO 14067 Greenhouse gases. Carbon footprint of products. Requirements and guidelines for quantification
 UNE-EN 16258 Methodology for calculation and declaration of energy consumption and GHG emissions of transport services (freight and passengers)

GEI-2025 Rev.00

11/09/2025

ACRONYMS

LCA Life cycle analysis

AECOC Manufacturers and Distributors Association

GHG Greenhouse Gases

GWP Global Warming Potential

ICAO International Civil Aviation Organization

GEI-2025 Rev.00

11/09/2025

DEFINITIONS

Greenhouse Gases

Gaseous component of the atmosphere, both natural and anthropogenic, that absorbs and emits radiation at specific wavelengths within the spectrum of infrared radiation emitted by the Earth's surface, atmosphere and clouds. ISO 14064-1 §3.1.1.

GHG reservoir

Component, other than the atmosphere, that has the capacity to accumulate GHGs and to store and release them. ISO 14064-1 §3.1.4.

Biogenic Carbon

Emissions related to the natural carbon cycle, as well as those resulting from the combustion, harvesting, digestion, fermentation, decomposition or processing of bio-based materials

GEI-2025 Rev.00

11/09/2025

1. GENERAL DETAILS, PURPOSE AND POLICY

1.1. Introduction

This document provides the complete global greenhouse gas inventory for the year 2024.

Teknoservice's emission reporting and classification process is consistent with international protocols and standards. This report has been prepared in accordance with Standard 14064-1:2019 - The information provided follows the requirements included in Section 9.3.1 of the Standard and 9.3.2 where applicable.

1.2. Purpose

Teknoservice's intention at this point is to demonstrate the use of best practices with respect to consistency, reproducibility and integrity with respect to greenhouse gas emissions.

This report:

- It refers to Teknoservice emissions.
- It has been prepared in accordance with the requirements of ISO 14064-1:2019.
- It prioritizes the use of primary data whenever possible but especially about the largest sources of emissions. When primary data is not available, a consistent and conservative approach has been taken in the calculations.
- It reflects Teknoservice's commitment to better understand and improve operational performance with respect to emissions.

An additional target is included to reduce annual emissions by 10% since these measurements started taking 2019 as reference year.

1.3. Description of Teknoservice

Teknoservice is a 100% Spanish capital company with more than 25 years of experience in the ICT sector. It is specialized in offering Integral Technological Solutions, based on the quality of TTL Professional products and on service excellence.

More information is available at http://www.teknoservice.es/

Company data:

Company	Teknoservice	
Address	PIBO. Avda de Albaida, 1.	
Address	Bollullos de la Mitación, 41110 (Seville)	
CIF	B41485228	
Type of footprint	Carbon footprint	
Period analysed	2024	
Standard used	ISO 14064-1:2019	
Contact	manuel.florido@teknoservice.es	

GEI-2025 Rev.00

11/09/2025

1.4. GHG policies and sustainability, strategies and programs

Teknoservice's vision as a 100-year old company is about reaching an end point. It is a daily mindset about growing a strong, iconic and lasting business. This means leaving a better place than we found it and doing everything possible to safeguard the future of people, communities and our planet.

Climate change remains a critical issue for businesses and governments around the world. For Teknoservice, this begins with the acceptance that our business is based on an activity that generates carbon emissions and therefore has the responsibility to reduce those emissions while maintaining our competitiveness and ability to provide quality services in accordance with the expectations of our customers.

Teknoservice's commitment to sustainability, safety, health and the environment has been and will continue to be a fundamental element of our successful operating practices to date.

1.5. Responsible personnel

The GHG inventory and report have been prepared at Teknoservice headquarters by the quality and certification staff.

1.5.1. Training of the team for the preparation of the GHG report and emissions inventory

Team members who have conducted the emissions inventory with awareness of all the principles and requirements of ISO 14064-1:2019.

1.6. Audience and Broadcasting Policy

This report has been made in order to provide Teknoservice's main collaborators with information about the greenhouse gas inventory, its structure and relevant explanations. It will be made public after accreditation by a third party.

1.7. Reporting period and frequency

This report covers the year 2024, from January 1 to December 31.

GHG reports will be issued annually.

1.8. Report standardization, approaches and verification

1.8.1. ISO 14064-1:2019 compliance

The GHG report for the year 2024 has been prepared in accordance with ISO 14064-1:2019. A traceability matrix with the reference standard is included in Annex 1.

GEI-2025 Rev.00

11/09/2025

1.8.2. GHG inventory audit

The GHG inventory has been verified at a reasonable level by Ecoterrae.

GEI-2025 Rev.00

11/09/2025

2. ORGANIZATIONAL BOUNDARIES

Teknoservice uses the operational control method to inventory your emissions. This method considers all emissions over which Teknoservice has control, but not necessarily financial control.

The most significant application of this approach is the inclusion of emissions from our supply chain, so that it is reflected from material extraction to the end of the product's life.

GEI-2025 Rev.00

11/09/2025

3. SYSTEM LIMITS

3.1. Emissions categorization and classification

The sources of greenhouse gases have been identified and grouped according to ISO 14064-1:2019.

- Direct GHG emissions and removals
- Indirect GHG emissions from energy imports
- Indirect GHG emissions from transport
- Indirect GHG emissions from products used by the company
- Indirect GHG emissions from the use of manufactured products
- Indirect GHG emissions from other sources

3.2. Significant factors

The following factors have been considered according to their magnitude and degree of relevance, including

- Amount of emissions
- Degree of influence of Teknoservice on the emission source
- Difficulty in obtaining data
- Validity of estimates

Based on the above, the criteria for identifying sources of significant emissions are

- When a single source has emissions likely to account for at least 1% of total Teknoservice emissions, it should be included.
- The total of non-significant sources should not exceed 5%.

GEI-2025 Rev.00

11/09/2025

3.3. Summary of included emission sources and activity data

Category	Emission Source	Activity Data	Units	Data Source	Type of Data
Category a)	Emissions issued by mobile sources	Consumed fuel	Liters of fuel	Fuel consumption accounting entries	Estimated Data
Category b)	Emissions generated in the production of consumed electricity	Electricity consumption	kWh	Monthly bills from the electricity company	Primary Data
Category c)	Emissions issued by internal transport due to fuel consumption	Consumed fuel	Liters of fuel	Internal company data	Estimated Data
	Emissions issued by external transport due to business travels	Emissions associated to the business travel	Kg CO ₂ eq/passenger	Internal company data	Estimated Data
	Emissions issued by external transport due to fuel consumption	Consumed fuel	Liters of fuel	Information provided by transport companies	Estimated Data
Category d)	Emissions issued by suppliers during manufacturing of components	Emissions associated to the production of items	Kg CO2 eq	Information provided by the supply chain	Primary Data
	Emissions issued by logistics due to fuel consumption	Transport emissions of the component from supplier to Teknoservice	Kg CO2 eq	DHL Validated Transportation Emissions Calculation Tools	Calculated Data
Category e)	Emissions generated during the use of products over their lifetime	Energy consumption of products	kWh	Energy Star internal test reports	Estimated Data
	Emissions generated during the treatment of products as WEEE	Weight in tonnes of sold products	Tonnes	Internal data	Primary Data

There has not been detected CO₂ biogenic emissions or removals.

3.4. Summary of emissions factors

The emissions factors and its source have been collected in the table below.

Emission factor	Value	Data source	Year of data
Emissions associated to electricity consumption in Spain (Luzia Energía) per MWh, using market-based approach	0,276 Tn CO ₂ eq	MITERD v.30	2024
Emissions associated to electricity consumption in Spain per MWh, using location-based approach	0,12 Tn CO₂ eq	Sistema Eléctrico Nacional	2023
Emissions per Liter of diesel fuel consumed	0,00324 Tn CO₂ eq	EN 16258, Table A1	2013
Business trip in Europe per passenger	0,402 Tn CO ₂ eq	ICAO	2024

GEI-2025 Rev.00	

11/09/2025

Business trip in Asia per passenger	0,944 Tn CO₂ eq	ICAO	2024
Emissions associated to use of the equipment in Spain (National electricity mix without GoO) per kWh	0,000275 Tn CO ₂ eq	MITERD v.30	2024
Treatment of kg of WEEE	0,021 Tn CO ₂ eq	euskadi.eus	2020

3.5. Summary of exclusions

The following sources of emissions are identified but excluded from the emissions inventory. These sources have not been considered significant or material to the contributors, in the context of the inventory, or are not feasible or practical to calculate at this time.

As noted in Section 3.2, the total sum of emissions excluded is estimated to be less than 5% of total emissions from Teknoservice.

Category	Emission source	Comments
1	Fugitive emissions from air conditioning systems	Very difficult to obtain reliable data. It is estimated to be <0.5%.
4	Packaging	It has not been considered when assuming <1% of the emission because of its low weight and being made with recycled materials
5	Product recycling and component reuse	They have not been included as we do not know the exact center where the waste is processed, its associated emissions and the % of product used. It is estimated that in this phase the emissions are favorable and reduces the impact to the product
6	Manufacturing of buildings and auxiliary industries	It cannot be feasibly quantified. It is estimated to be <0.5%.
6	Replacement components	The failure rate of products delivered by Teknoservice is <3%, and the repair does not always involve the replacement of components. It is estimated that it contributes <2% of the

There are emissions related to CH4 and N2O that could not have been calculated separately as the emissions factors used are from table A1 from standard EN 16258, which only covers CO₂ emissions.

3.6. Selection of the quantification approach

The quantification of the data has been made from calculation based on the formula:

Emissions = ADxEF

Where:

AD: Activity data EF: Emission factor

The mode of calculation has been made from the emission sources and associated activity data are included in the table in section 3.3.

GEI-2025 Rev.00

11/09/2025

3.7. Summary of GWC

The following table shows the GWC (IPPC) of the GHG:

GHG	GWC (IPCC)	
Carbon Dioxide	1	
Methane	27,9	
Nitrous Oxide	273	

GEI-2025 Rev.00 11/09/2025

4. QUANTIFICATION OF THE EMISSIONS INVENTORY

4.1. Consolidated GHG emissions data.

Total carbon footprint (Tn CO₂ eq)	3.158,87	Tn CO₂ eq	
GHG Emissions Catego	ory 1		
Direct emissions of fuel from mobile elements	29,12	Tn CO₂ eq	
TOTAL	29,12	Tn CO₂ eq	
GHG Emissions Catego	ory 2		
Indirect emissions from energy consumption	18,31	Tn CO₂ eq	
TOTAL	18,31	Tn CO₂ eq	
GHG Emissions Category 3			
Emissions associated with shipments of finished products (criteria according to EN 16258)	32,94	Tn CO₂ eq	
Emissions from commuting to work	172,58	Tn CO₂ eq	
Emissions from business travel	6,99	Tn CO₂ eq	
TOTAL	212,51	Tn CO₂ eq	
GHG Emissions Catego	GHG Emissions Category 4		
Emissions associated with material supplies	1317,60	Tn CO₂ eq	
TOTAL	1317,60	Tn CO₂ eq	
GHG Emissions Category 5			
Emissions associated with product use	1578,85	Tn CO₂ eq	
Emissions associated with product waste	2,47	Tn CO₂ eq	
TOTAL	1581,32	Tn CO₂ eq	

GEI-2025 Rev.00

11/09/2025

4.1.1. Consolidated GHG emissions using a location-based approach

For GHG emissions included in category 2, a location-based approach calculus has been also considered, using the data of emissions per kWh of the national grid. The calculus using this approach are included in the following table:

Total carbon footprint (Tn CO₂ eq)	3.253,26	Tn CO₂ eq	
GHG Emissions Catego	ry 1		
Direct emissions of fuel from mobile elements	29,12	Tn CO₂ eq	
TOTAL	29,12	Tn CO₂ eq	
GHG Emissions Catego	ry 2		
Indirect emissions from energy consumption	112,70	Tn CO₂ eq	
TOTAL	112,70	Tn CO₂ eq	
GHG Emissions Category 3			
Emissions associated with shipments of finished products			
(criteria according to EN 16258)	32,94	Tn CO₂ eq	
Emissions from commuting to work	172,58	Tn CO₂ eq	
Emissions from business travel	6,99	Tn CO₂ eq	
TOTAL	212,51	Tn CO₂ eq	
GHG Emissions Category 4			
Emissions associated with material supplies	1317,60	Tn CO₂ eq	
TOTAL	1317,60	Tn CO₂ eq	
GHG Emissions Category 5			
Emissions associated with product use	1578,85	Tn CO₂ eq	
Emissions associated with product waste	2,47	Tn CO₂ eq	
TOTAL	1581,32	Tn CO₂ eq	

4.2. Methodology for data collection and quantification

As Teknoservice has an international supply chain, data collection is global in scope and therefore several different databases had to be used to reach the desired level of detail.

The emissions summary represents the best attempt to consolidate and standardize emissions data, providing a detailed explanation of the working methodology and estimates, in accordance with the requirements of ISO 14064-1:2019.

Section 3.3 provides an overview of emission sources and their respective data sources. Where an approximation or estimation has been required, the best available calculation methods have been used. Where two or more possible and equally valid estimates have been considered, the one that is most unfavourable in terms of the level of emissions produced has been considered.

GEI-2025 Rev.00

11/09/2025

4.2.1. Emissions from fuel consumption

The calculation of the category 1 emissions has been made according to the emission factors included in table A1 of the UNE-EN 16258:2013, relating the volume of fuel consumed to the CO_2 eq emitted into the atmosphere. The *well to wheel* factors has been considered to incorporate the consumption from the extraction of the raw material.

To calculate the volume of consumed fuel, it has been considered the data collected from the fuel invoices in Euro and applying an average value of diesel price for year 2024 (1,216 €/I), according to the data published by CETM. It has been taken as assumption that all the fuel is diesel to be conservative with the calculations.

4.2.2. Electrical Consumption

For the calculation of emissions derived from electricity consumption (market-based approach), determined as category 2, the value provided by the Ministry for Ecological Transition and Demographic Challenge has been taken as a reference, with the values corresponding to 2024, specifically for the companies that provided electricity supply to Teknoservice.

The data have been collected from invoices issued by the electrical company to Teknoservice.

4.2.3. Equipment consumption

Since the evaluated equipment is Energy Star compliant, it has been possible to establish the consumption that it will have during its useful life, which is estimated at 5 years. This value corresponds to the guarantee that Teknoservice gives to its equipment. Electric emissions per KWh has been considered as emission factor, using the emission factor provided by the Government for the country of sales.

4.2.4. Manufacture of components

The carbon footprint of the components of the product manufactured by Teknoservice have been taken in consideration for the calculations. This information has been reported by the different suppliers taking in consideration all their direct and indirect emissions. The system has been extended through the entire subcontracting chain to ensure that emissions from the extraction of the material are considered. The carbon footprints related to suppliers are not third-party verified.

4.2.5. Sending components from suppliers

The carbon footprint calculation tool created by DHL, and validated by SGS, has been used to calculate the emissions associated with the shipment of materials from the subcontractor to

GEI-2025 Rev.00

11/09/2025

Teknoservice. This tool has considered the weight and volume of the packages, as well as the place of collection and destination in order to estimate the emissions produced during transport.

4.2.6. Sending products to customers

To avoid double counting, only the emissions associated with transport companies contracted by Teknoservice have been estimated. Those deliveries made by our own vehicles are considered in category 1 emissions through fuel consumption.

The emissions associated with transport companies have been made considering the composition of the vehicle fleet. Based on this composition, the average fuel consumption has been calculated, based on the guide for calculating the carbon footprint of road freight transport, issued by the AECOC in 2017.

It has been considered the number of items produced by Teknoservice for the current year of analysis.

4.2.7. Travel

The number of business trips made by Teknoservice staff have been considered. Emissions estimates have been made through the emissions calculation tool created by ICAO.

Concerning traveling of the personnel to the workplace, it has been considered that all the worker's residences are in a 20 km radius and applying this distance to all the employees to be more conservatives with the calculus. Average number of employees in year 2024 has been considered for the calculus. In addition, it is assumed that all the workers have a diesel and petrol vehicle, and they do not share vehicle. Emissions factors established for diesel and petrol emissions according to table A1 of EN 16258.

4.2.8. Waste treatment

To calculate the emissions associated with the treatment of electronic waste, the carbon footprint calculation guide created by the Basque Government has been used, considering the amount of waste produced. It has been considered that 100% of the products will be recycled at the end of its life. The emission factor used by this guide is 21 kg CO_2 eq per kg of electronic waste treated.

4.3. Information management procedures

GHG reporting and measurement has been performed to ensure compliance with the principles of ISO 14064-1:2019 and to be consistent with the intended use of the GHG inventory.

GEI-2025 Rev.00

11/09/2025

The procedures outlined below are designed to establish a structure and provide controls to ensure the accuracy and integrity of the inventory.

This GHG report also includes the following considerations:

- Responsibility and authority for the development of the inventory.
- Review and implementation of training for the team that establishes the inventory.
- Identification of organizational and system boundaries.
- Selection and review of GHG sources and sinks
- Details of quantification methods and considerations for their consistent application.

4.4. Determination of uncertainty

For this report corresponding to the year 2024, a more qualitative than quantitative evaluation has been carried out for the determination of uncertainty. With current tools and a variety of emission sources, our view is that a quantitative assessment would be complex and offer little validity in terms of statistical uncertainty. The applicability of these quantitative assessments will be reviewed in each reporting period.

The emissions inventory included in section 4.1 entails a certain degree of indetermination, especially about data provided by third parties.

Teknoservice works with a complex international network of collaborators, which involves third parties and includes a large amount of data, especially considering that this study is carried out from the extraction of the raw material to the final disposal of the product.

Available data, integration systems and business sensitivity can influence how broadcast information has been transmitted and interpreted throughout the supply chain. In any case, we have full confidence in the information provided by our partners.

Where there are uncertainties or omissions in existing data, a conservative approach has been taken.

Determination of degree of uncertainty:

Activity data	Range of uncertainty
Consumed fuel by Teknoservice's	Α
vehicles	
Electric consumption	Α
Consumed fuel due in internal	В
transport	
Emissions associated to business	С
travels	
Liters of consumed fuel by logistics	D
companies	
Emissions associated to the	С
production of items	
Transport emissions of the	В
component from supplier to	
Teknoservice	
Energy consumption of products	В

GEI-2025 Rev.00

11/09/2025

Weight of sold products	А

Emission source	Range of uncertainty
Emissions associated to electricity	Α
consumption in Spain (Luzia Energía)	
per MWh, using market-based	
approach	
Emissions associated to electricity	Α
consumption in Spain per MWh, using	
location-based approach	
Emissions per Liter of diesel fuel	Α
consumed	
Business trip in Europe	D
Business trip in Asia	D
Emissions associated to use of the	Α
equipment in Spain (National	
electricity mix without GoO) per kWh	
Treatment of kg of WEEE	С

The range of uncertainties are explained in the table below:

Grade	Level of Certainty	Description
Α	Very High	Data is highly accurate and verifiable. It is based on
		direct measurements, reliable records, or
		internationally recognized standards.
В	High	Data has a good level of accuracy, though it may be
		subject to minor variations. It includes estimates based
		on accepted methodologies.
С	Moderate	Data is subject to greater uncertainty due to reliance
		on assumptions or secondary sources.
D	Low	Data is highly uncertain due to a lack of detailed
		information or reliance on generalized assumptions.

4.5. Changes from the base year

The selected base year for this analysis is 2019, which value is 1.909 Tn CO₂eq. This year is used as a reference to evaluate GHG emissions in subsequent periods, ensuring consistency and comparability of the data.

In accordance with Section 6.4.2 of ISO 14064, the base year must be recalculated under the following circumstances:

- Significant structural changes: Includes mergers, acquisitions, divestitures, or any other modifications to organizational boundaries that substantially affect reported emissions.
- Methodological changes: Adoption of new calculation methods, updated emission factors, or improvements in data accuracy that result in significant differences in estimated emissions.
- Identification of material errors: Correction of significant errors in the base year data detected through audits, reviews, or validations.

GEI-2025 Rev.00

11/09/2025

- Addition or removal of emission sources: Inclusion of new relevant emission sources or exclusion of previously considered sources due to changes in operations or system boundaries.
- Revision of operational or reporting boundaries: Adjustments to the boundaries of direct or indirect emissions (Scope 1, Scope 2, Scope 3) to more accurately reflect organizational activities.

4.6. Elimination and reductions/increases

There are not removals of CO_{2eq} .

GEI-2025 Rev.00

11/09/2025

ANNEX 1

Traceability between the report and ISO 14064-1:2019

Section of ISO 14064- 1:2019	Report section
9.3.1 (a)	1.3
9.3.1 (b)	1.5
9.3.1 (c)	1.7
9.3.1 (d)	2
9.3.1 (e)	3
9.3.1 (f)	4.1
9.3.1 (g)	3.3
9.3.1 (h)	4.6
9.3.1 (i)	3.5
9.3.1 (j)	4.1
9.3.1 (k)	4.5
9.3.1 (I)	4.5
9.3.1 (m)	4.2
9.3.1 (n)	NA
9.3.1 (o)	3.4
9.3.1 (p)	4.4
9.3.1 (q)	4.4
9.3.1 (r)	1.8.1
9.3.1 (s)	1.8.2
9.3.1 (t)	3.7
9.3.2 (a)	1.4
9.3.2 (b)	NA
9.3.2 (c)	NA
9.3.2 (d)	NA
9.3.2 (e)	NA
9.3.2 (f)	4.1
9.3.2 (g)	NA
9.3.2 (h)	NA
9.3.2 (i)	NA
9.3.2 (j)	NA
9.3.2 (k)	NA

GHG EMISSIONS REVIEW REPORT 2024:

UNE-EN ISO 14064: 2019

TEKNO SERVICE®

Tecnología en sus Manos

This report has been prepared by Ecoterrae with all reasonable skill and diligence within the terms and conditions of the contract between Ecoterrae and the client.

Ecoterrae is not responsible to the client, or to anyone else, with respect to any matter outside the scope agreed for this project.

Regardless of the confidentiality of the report, Ecoterrae does not accept liability of any kind towards third parties to whom this report, or any part of it, is made known. Either of these parties relies on the report at their own risk. Interpretations, analyzes or statements of any kind made by a third party and

based on this report are beyond the responsibility of Ecoterrae.

Table of content

1.	Organization	3
2.	Object of the audit	3
3.	Validation or internal audit criteria	3
4.	Level of assurance required	4
5.	Declaration of conformity	4
6.	Audit scope	5
7.	Analysis of the carbon footprint calculation	6
7.1.	Activity data and Emission factors	6
8.	Results	9
9.	Exclusions	10
10.	Compliance with the reference standard	12
11.	Summary of findings and Opportunities for improvement	14

Version 1 15/09/2025

1. Organization

COMPANY:	TEKNOSERVICE, S.L.	
ADDRESS:	Polígono Industrial PIBO, Avenida de Albaida 1, 41110 Bollullos de la Mitación, Sevilla (Spain).	
CIF:	B41485228	
ORGANIZATION REPRESENTATIVE:	Manuel Florido Puig-Samper- Quality Manager	
TELEPHONE:	954 54 12 12	
E-MAIL:	manuel.florido@teknoservice.es	
EXPEDIENTE:	Corporate Carbon Footprint	
NORMA DE REFERENCIA:	UNE-EN-ISO 14064-1:2019 (ISO 14064-1:2018)	
AUDIT TYPE:	Internal audit	
	GHG Report 2024	
INTERNAL AUDIT DATE:	September	
AUDITOR TEAM:	Rocío Olmedo Vázquez	

2. Object of the audit

The main objective of this internal audit is to confirm the correct calculation of Greenhouse Gas Emissions of the Teknoservice organization for the year 2024 and the preparation of the GHG Report based on the criteria of the applicable reference standard, taking into account the selected scope.

A review of the documentary system associated with the scope established for the current period will be carried out: activity data, invoices and other relevant documentation, such as the data management system and acquisition and registration, treatment and control processes.

The verification has been carried out on the greenhouse gas inventory for the year 2024 and the information contained in the 2024 GHG inventory report of the Organization.

3. Validation or internal audit criteria

- UNE-EN ISO 14064.2019 part 1
- UNE-EN ISO 14064: 2019 part 3
- UNE-EN 16258
- TEKNOSERVICE GHG emissions inventory report 2024

4. Level of assurance required

The level of assurance used by the verifier to determine if there are errors, omissions or misinterpretations has been "REASONABLE assurance level".

5. Declaration of conformity

Based on the process and procedures performed, the GHG statement:

- It is substantially correct and is a faithful representation of the GHG information and data and,
- is prepared in accordance with the standard related to GHG quantification, monitoring and reporting, or with relevant national standards or practices.

6. Audit scope

The scope of the internal audit shall be the following emission sources:

GHG Report Category	Subcategory	Emission source
1. Direct GHG emissions	Consumption of fossil fuels in the mobile fleet	Consumption of fossil fuels (Diesel A) in vehicles.
2. Indirect GHG emissio imports	ns from energy	Consumption of electricity
	Transport of employees	Transport of employees to and from the workplace (round trip)
3. Indirect GHG emissions from	Business trips	Business trips, client meetings, etc.
transportation	shipment of manufactured products	Transport carried out for the distribution of processed products to customers.
4. Indirect GHG emissions derived from products used by the company		Indirect emissions associated with supplies of materials (manufacturing and transport).
5. Indirect GHG emissions derived from the use of manufactured products		Emissions from in-use during product lifetime
		Emissions associated with product residues
6. Other indirect emissions		Not applicable

The products manufactured by Teknoservice, and that have been evaluated for this study are the following:

- Laptop
- Teknopro
- Teknoslim
- Teknopack
- Ultrabook
- Ultrazero

7. Analysis of the carbon footprint calculation

7.1. Activity data and Emission factors

Direct GHG emissions:

• Fossil fuel consumption in Teknoservice's own vehicles: In the case of fuel consumption, the data has been compiled from the amounts (in euros excluding VAT) of the refuelling invoices provided by the company's administrative department. These data are translated into litres of fuel using an average value of diesel (€/l) for the year 2024 from the Spanish Confederation of Freight Transport (CETM) deducting VAT. It has been taken as assumption that all the fuel is diesel to be conservative with the calculations.

A sample of invoices is taken and some isolated deviations are detected.

As in previous years, the EF values from Table A1 of UNE-EN 16258:2013 are used.

Indirect GHG emissions caused by imported energy:

• **Electricity consumption:** All electricity bills from the electricity supplier *Luzía Energía*, *S.L.* and Endesa Energía, SAU for the installations in the year 2024 are checked.

The calculation made from a market perspective shows that the Emission Factor used for the electricity company Endesa Energía, SAU is incorrect since, according to the consultation carried out with the National Commission for Markets and Competition (CNMC), there are no redemptions associated with CUPS ES0031104690694001QK, so the EF provided by MITERD (v.31), 0,275 kgCO₂e/kWh, should be used for the calculations.

With regard to the location-based approach, the EF used is not correct. The FE provided for the peninsula for the year 2024 by the National Electricity Grid (REE) must be used for the calculations (0,08 tCO₂e/MWh).

Indirect GHG emissions caused by transport:

 Fuel consumption in the mobility of employees to their jobs (Employee mobility): This is an estimate based on the average number of employees in 2024 reported on the average number of registered workers from the General Treasury of the Social Security

for the year 2024 (taking into account that some of the workers belonging to the workforce provide outsourcing services for other companies while working full-time at the clients' facilities) and the distance from the employees' home to the workplace. The default distance has been set as the furthest home (20 km) and it has been assumed that all employees drive private vehicles (petrol and diesel cars) and do not share a car.

In order to use the EFs in Table A1 of standard EN 16258, the average consumption of a private vehicle has been estimated. The source of information on which this estimate is based is not provided.

Emissions on business trips: The number of business trips made throughout 2024 has been provided by human resources, although the destination cities are unknown. For the purposes of calculation, Beijing and Berlin have been taken as representative destination cities. The ICAO (International Civil Aviation Organisation) platform is used to calculate the emissions generated per passenger per journey.

The EF could not be verified because it was not provided.

 Fuel consumption in downstream transport for the shipment of products: The diesel consumption of transporting products to customers is estimated based on the number and type of vehicle, the weights of products transported and the distance travelled.

No evidence is shown of the update carried out on the transporters' vehicle fleet.

Indirect GHG emissions caused by the use of products:

Consumption (and transport) of raw materials: Consumption data are calculated based on the quantities (in units and weights) of each product purchased by the organisation and the place of origin and means of transport by which the shipment is made. The emissions associated with the manufacture of each product purchased by the organisation have been provided by the suppliers of each product (these carbon footprints have not been verified by third parties).

During the internal audit it was not possible to verify the results of the transport emissions from the suppliers calculated with the tool created by DHL and validated by SGS, as the company did not have written evidence of this data.

The carbon footprint of the items purchased was provided by the suppliers by completing a spreadsheet. No additional evidence is available from the supplier to support the data.

• Indirect GHG emissions caused by the use of the organization's products:

Use of products: the total number of units sold of each product type (extracted from an ERP) and the years of useful life of these products (based on their warranty period), multiplied by the energy consumption (kWh/year) certified by the Energy Star internal test reports of each product type to obtain the total annual electricity consumption.

It has been verified that the EF used is incorrect, as the one corresponding to the company (Endesa Energía, SAU) has been used. As these are products that will be used in the buyers' homes and it is impossible to know which electricity company each one has contracted, the EF of the national electricity mix without GdO (MITERD, V.31) must be used.

 Product waste: It is calculated on the basis of the weight of each type of product and the units sold of each product, assuming that all waste is treated (recycled) at the end of its useful life.

The weight of each product has been obtained by direct weighing (the scales have not been calibrated).

The calculation was made using the 2020 EF for the incineration of commercial and industrial waste from the Basque Country Government's Carbon Footprint Calculator. This EF has also been rounded from 21.354 kgCO₂e/t to 21.00 kgCO₂e/t.

8. Results

The carbon footprint of the Teknoservice organization at the time of the Internal Audit, before correcting the errors detected during the audit, is 3.117,41 tons of CO_2 equivalent for the calculation year 2024, of which 29,12 tCO₂e derive from direct emissions (market-based approach).

Total carbon footprint (Tn CO₂ eq)	3.117,41	Tn CO₂ eq
GHG Emissions Catego	ory 1	
Direct emissions of fuel from mobile elements	29,12	Tn CO₂ eq
TOTAL	29,12	Tn CO₂ eq
GHG Emissions Catego	ory 2	
Indirect emissions from energy consumption	18,31	Tn CO₂ eq
TOTAL	18,31	Tn CO₂ eq
GHG Emissions Catego	ory 3	
Emissions associated with shipments of finished products (criteria according to EN 16258)	32,94	Tn CO₂ eq
Emissions from commuting to work	172,58	Tn CO₂ eq
Emissions from business travel	6,99	Tn CO₂ eq
TOTAL	212,51	Tn CO ₂ eq
GHG Emissions Category 4		
Emissions associated with material supplies	1317,60	Tn CO₂ eq
TOTAL	1317,60	Tn CO₂ eq
GHG Emissions Category 5		
Emissions associated with product use	1537,39	Tn CO₂ eq
Emissions associated with product waste	2,47	Tn CO₂ eq
TOTAL	1539,86	Tn CO₂ eq

Location-based approach:

Total carbon footprint (Tn CO₂ eq) 3.137,98		Tn CO₂ eq
GHG Emissions Catego	ory 1	
Direct emissions of fuel from mobile elements	29,12	Tn CO₂ eq
TOTAL	29,12	Tn CO₂ eq
GHG Emissions Catego	ory 2	
Indirect emissions from energy consumption	38,88	Tn CO₂ eq
TOTAL	38,88	Tn CO₂ eq
GHG Emissions Catego	ory 3	
Emissions associated with shipments of finished products (criteria according to EN 16258)	32,94	Tn CO₂ eq
Emissions from commuting to work	172,58	Tn CO₂ eq
Emissions from business travel	6,99	Tn CO₂ eq
TOTAL	212,51	Tn CO₂ eq
GHG Emissions Category 4		
Emissions associated with material supplies	1317,60	Tn CO₂ eq
TOTAL	1317,60	Tn CO₂ eq
GHG Emissions Category 5		
Emissions associated with product use	1537,39	Tn CO₂ eq
Emissions associated with product waste	2,47	Tn CO₂ eq
TOTAL	1539,86	Tn CO₂ eq

Separate quantification of direct GHG emissions for CO_2 , CH_4 and N_2O has not been possible due to the fact that the emission factors in the UNE-EN 16258 standard have been used and these are not broken down by gas type.

These results must be recalculated after correcting the deviations detected.

9. Exclusions

A significance value of 1% of Tecknoservice's total emissions is defined, so that emissions representing less than this percentage can be excluded from the calculation, as long as all emissions together do not add up to more than 5% of the organization's carbon footprint.

GHG Report Category	Emission source	Comments
1. Direct GHG emissions	Fugitive emissions from air conditioning systems (use of refrigerant gases).	Very difficult to obtain reliable data. It is estimated to be <0.5%.
4. Indirect GHG emissions derived from products used by the company	GHG emissions associated with the use of packaging.	It has not been considered when assuming <1% of the emission because of its low weight and being made with recycled materials
5. Indirect GHG emissions derived from the use of manufactured products	GHG emissions from the recycling and reuse of materials.	They have not been included as we do not know the exact center where the waste is processed, its associated emissions and the % of product used. It is estimated that in this phase the emissions are favorable and reduces the impact to the product
	Manufacture of buildings and auxiliary industries.	It cannot be feasibly quantified. It is estimated to be <0.5%.
6. Other indirect emissions	GHG emissions associated with spare parts components.	The failure rate of products delivered by Teknoservice is <3%, and the repair does not always involve the replacement of components. It is estimated that it contributes <2% of the

10. Compliance with the reference standard

After reviewing the Greenhouse Gas Report 2024, the Carbon Footprint 2024 spreadsheet, and the respective procedures, as well as the activity data and emission factors used, the following table summarizes the observations found based on the requirements of the standard:

Information required	Compliance	Observations	
Description of the	_		
organization	Yes	It is stated in the report	
Person or entity	Yes	It is stated in the report	
responsible for the report	165	it is stated in the report	
Period covered by the	Yes	It is stated in the report	
report		·	
Limits of the organization	Yes	It is stated in the report	
Reporting limits (including criteria set by the organization to define significant emissions) for defining significant emissions)	Yes	It is stated in the report	
Base year (The selected historical base year and the GHG inventory for the base year)	Yes	It is stated in the report	
Changes from the base year: Explanation of any changes to the base year or other historical GHG data, or categorisation and any recalculation of the base year or other historical GHG inventory, and documentation of any limitations to comparability resulting from such recalculation.	N/A	It is stated in the report	
Quantification approach: Reference to or description of quantification approaches, including reasons for their selection.	Yes	It is stated in the report	
Explanation of any changes to previously used quantification approaches	N/A	-	
Reference to the activity data used	Yes	It is stated in the report	

Information required	Compliance	Observations
Reference or	-	
documentation of the	Vaa	It is atotal in the nament
GHG emission or removal	Yes	It is stated in the report
factors used		
Biogenic emissions: A		
description of how		
biogenic CO2 emissions		
and removals and relevant		
biogenic CO2 emissions		
and removals quantified		
by the GHG inventory are		
considered in the GHG	N/A	-
inventory biogenic CO ₂		
emissions and removals		
and relevant biogenic CO2		
emissions and removals quantified separately in		
tons of CO ₂ e separately in		
tons CO ₂ e separately in		
GHG removals: If		
quantified, the direct GHG	N/A	_
removals, in tons CO ₂ e	, , , ,	
Exclusions: Explanation of		
the exclusion of any		
significant sources or	Yes	It is stated in the report
sinks of GHGs from the		
quantification.		
Quantified indirect GHG		
emissions separated by	Yes	It is stated in the report
category in tons CO ₂ e		
Description of the impact		
of uncertainties on the		
accuracy of GHG	Yes	It is stated in the report
emissions and removals		·
data by category removals data		
Description and results of		
the uncertainty	Yes	It is stated in the report
assessment	1.00	
Standard used: A		
statement that the GHG		
report has been prepared	Yes	It is stated in the report
in accordance with this		· ·
document.		

Information required	Compliance	Observations
Verification: Disclosure describing whether the GHG inventory, report or declaration has been verified, including the type of verification and the level of assurance achieved.	N/A	
Emissions reduction plan	No	Not included in the report but proposed as a future improvement.

11. Summary of findings and Opportunities for improvement

The findings discussed throughout the internal audit report (inaccuracies and irregularities) are summarised below. Once corrected, and where appropriate, the results should be updated:

Nº		Description	Classification
I1	consumpti	There are specific errors (invoice 2408093) and one unregistered invoice (2404959 for €70,29 for diesel fuel).	Inaccuracy
12	Direct GHG emissions	Emissions of each relevant greenhouse gas (CO ₂ , CH ₄ , and N ₂ O) are not reported individually, expressed in metric tonnes as required by the standard.	Irregularity
13	Indirect GHG emissions caused by imported energy	The CNMC has verified that there are no redemptions associated with CUPS ES0031104690694001QK, so the EF provided by MITERD (v.31) must be used for the company Endesa Energía, SAU (0,275 kgCO ₂ e/kWh).	Inaccuracy
14	Indirect GHG emissions caused by imported energy	With regard to the localisation approach, the EF used is not correct. The FE provided for the peninsula for the year 2024 by the National Electricity Grid (REE) must be used for the calculations (0,08 tCO2e/MWh).	Inaccuracy

Nº		Description	Classification
15	Emissions business trips	The calculation of emissions from business travel involves a great deal of uncertainty, as there is no actual information on destinations and ICAO calculations have been used directly, with the EF used also unknown.	Inaccuracy
16	Indirect GHG emissions caused by the use of the organizatio n's products: Use of products.	The EF used is incorrect, as the one corresponding to the company (Endesa Energía, SAU) has been used. As these are products that will be used in the buyers' homes and it is impossible to know which electricity company each one has contracted, the EF of the national electricity mix without GdO (MITERD, V.31) must be used (0,283 kgCO ₂ e/kWh).	Inaccuracy
17	Indirect GHG emissions caused by the use of the organizatio n's products: Product waste	A more up-to-date EF should be used, in line with the waste management material and process, such as that provided by DEFRA for electrical items (WEEE small) for the year 2024. The EF used should not be rounded.	Inaccuracy

In addition, the following table lists opportunities for improvement in data collection, calculations and reporting:

Nº	Description
OM1	It is recommended to keep an internal record of the quantities of fuel refuelled (in litres) in the mobile fleet by fuel type. This information is easily accessible, as it is included on bills, and it will eliminate the need to convert from euros to litres, providing more reliable data.
OM2	Mobility surveys are recommended to obtain the actual kilometres travelled annually from their homes to their workplaces, as well as the type of transport used.
ОМЗ	It is recommended that a reduction plan be drawn up and that the application and effectiveness of the proposed and implemented measures be monitored.

Nº	Description
OM4	It is recommended to record written evidence (e-mails, certificates, bills, etc.) of all data provided for estimations and calculations, such as update of the fleet of vehicles of carriers, data provided by the different departments of the company, tickets and different means of transport used for business trips, etc.
OM5	Reference should always be made to the official sources from which the data used for calculations and estimates are drawn.
OM6	As it is not possible to know the emission factors used by ICAO for the calculation of emissions per passenger on flights, it is recommended that only the ICAO platform is used to obtain the kilometres travelled and that official emission factors (e.g. DEFRA) are used for the calculation of emissions.
ОМ7	It is recommended that the significance analysis of emission sources be improved. All categories covered by the standard must be taken into account and a qualitative and quantitative significance analysis must be carried out on all of them to demonstrate compliance with the requirements for considering each source as material.

TECHNICAL REVIEW STATEMENT

Commissioned by:

TEKNOSERVICE

Carried out by:

ECOTERRAE GLOBAL SOLUTIONS SL

Reviewed by:

Rocío Olmedo Vázquez. (ECOTERRAE Consultant)

Reference:

- UNE-EN ISO 14064-1: 2019 "Greenhouse gases Part 1: Specification with guidance at the organization level for quantification and reporting of greenhouse gas emissions and removals (ISO 14064-1: 2018)"
- UNE-EN 16258 2013 "Methodology for calculation and declaration of energy consumption and GHG emissions of transport services (freight and passengers)"

Scope:

Direct fuel emissions from moving parts
Indirect emissions from energy consumption
Emissions associated with Emshipments of finished products
Emissions derived from Emcommuting to work

Emissions derived from business trips
Emissions associated with supplies of materials
Emissions associated with the use of products
Emissions associated with product waste

Analysis and verification of individual data sets are outside the scope of this review.

Products evaluated:

- Laptop
- Teknopro
- Teknoslim
- Teknopack
- Ultrazero
- Ultrabook

General evaluation:

- This evaluation is based on the final report received on September 2025.
- The objective and scope of the evaluation are clearly defined.
- The system limit adequately includes all the emission sources contemplated according to the ISO 14064-1: 2019 standard.
- The team made every effort to break down each component included in the system for inclusion in the models.
- To calculate the emissions associated with transport, the study has been based on the criteria established by the UNE-EN 16258 standard.
- Any important assumptions that had a significant influence on the results are well justified. If not, the exclusions have been consistently justified.
- The team was always very open and responsive to my comments and all were directed to my complete satisfaction.
- They were also very open in demonstrating all aspects of the models used as part of the calculations.

Conclusion:

The study has been carried out in accordance with ISO 14064-1: 2019 standards. The critical reviewer considered the overall quality and rigor of the methodology and its execution to be well suited for the purposes of this study. The study is reported in a comprehensive manner and is transparent in its scope and in its methodological choice.

Sevilla, 15 september 2025

Rocío Olmedo Vázquez

